Peer-reviewed articles
Bladt, M. and Pittarello G. (2024) Individual claims reserving using the Aalen–Johansen estimator. ASTIN Bullettin - The Journal of the IAA. Published online 2024:1-21. doi:10.1017/asb.2024.28. ArXiV:2311.07384
Pittarello G., Luini E. and Marchione MM. GEMAct: a Python package for non-life (re)insurance modeling. Annals of Actuarial Science. Published online 2024:1-37. doi:10.1017/S1748499524000022. ArXiV:2303.01129.
Submitted manuscripts
Hiabu M., Hofman E. D., and Pittarello G. (2023), A machine learning approach based on survival analysis for IBNR frequencies in non-life reserving. ArXiV:2312.14549
Pittarello G., Hiabu M. and Villegas A. (2022), Replicating and extending chain-ladder via an age-period-cohort structure on the claim development in a run-off triangle ArXiV:2301.03858.
Technical reports
Hiabu M., Hofman E. D., and Pittarello G. (2024). Claim Counts Prediction with Individual Data Using ReSurv.
McGuire, G., Pittarello, G. (2022). Reserving with glms in Python. Machine Learning in Reserving Working Party, Institute and Faculty of Actuaries (IFoA).
Software
Hofman E. D., Pittarello G., and Hiabu M. (2023), ReSurv (R package).
Pittarello G., Hiabu M., and Villegas A. (2022), clmplus (R package).
Pittarello G., Luini E. and Marchione M.M. (2022), GEMAct (Python package).